EE 511
Support Vector Machines

Instructor: Hanna Hajishirzi
hannaneh@washington.edu

Slides adapted from Ali Farhadi, Mari Ostendorf, Pedro Domingos, Carlos Guestrin, and Luke Zettelmoyer, Kevin Jamison
Linear classifiers – Which line is better?
Pick the one with the largest margin!

Margin for point j:
$$
\gamma^j = y^j (w \cdot x^j + w_0)
$$

Max Margin:
$$
\max_{\gamma, w, w_0} \gamma
\forall j. y^j (w \cdot x^j + w_0) > \gamma
$$

$$
w \cdot x = \sum_i w_i x_i$$
How many possible solutions?

\[
\max_{\gamma, w, w_0} \gamma \\
\forall j. y^j (w \cdot x^j + w_0) > \gamma
\]

Any other ways of writing the same dividing line?

- \(w \cdot x + b = 0 \)
- \(2w \cdot x + 2b = 0 \)
- \(1000w \cdot x + 1000b = 0 \)
-
- Any constant scaling has the same intersection with z=0 plane, so same dividing line!

Do we really want to max \(\gamma, w, w_0 \)?
Review: Normal to a plane

Key Terms

- \(x^j \) -- projection of \(x^i \) onto \(w \)
- \(\bar{x}^j \) -- unit vector normal to \(w \)

\[
x^j = \bar{x}^j + \lambda \frac{w}{\|w\|_2}
\]

\[
\|w\|_2 = \sqrt{\sum_i w_i^2}
\]
\[x^j = \bar{x}^j + \lambda \frac{w}{\|w\|_2} \]

Final result: can maximize constrained margin by minimizing \(\|w\|_2 \)!!!
Max margin using canonical hyperplanes

The assumption of canonical hyperplanes (at +1 and -1) changes the objective and the constraints!
Support vector machines (SVMs)

- Solve efficiently by quadratic programming (QP)
 - Well-studied solution algorithms
 - Not simple gradient ascent, but close

- Decision boundary defined by support vectors

\[
\min_{w, w_0} \frac{1}{2} \|w\|^2_2 \\
\forall j. y^j (w \cdot x^j + w_0) \geq 1
\]

Support Vectors:
- data points on the canonical lines

Non-support Vectors:
- everything else
- moving them will not change \(w \)
What if the data is not linearly separable?

Add More Features!!!

$\phi(x) = \left(\begin{array}{c} x_1 \\ \vdots \\ x_n \\ x_1 x_2 \\ x_1 x_3 \\ \vdots \\ e^{x_1} \\ \vdots \end{array} \right)$

Can use Kernels… (more on this later)

What about overfitting?
What if the data is still not linearly separable?

\[
\min_{w, w_0} \frac{1}{2} \|w\|^2 + C \#(\text{mistakes})
\]

\[
\forall j. y^j (w \cdot x^j + w_0) \geq 1
\]

• First Idea: Jointly minimize \(\|w\|^2 \) and number of training mistakes
 – How to tradeoff two criteria?
 – Pick \(C \) on development / cross validation

• Tradeoff \#(mistakes) and \(\|w\|^2 \)
 – 0/1 loss
 – Not QP anymore
 – Also doesn’t distinguish near misses and really bad mistakes
 – NP hard to find optimal solution!!!
Slack variables – Hinge loss

For each data point:

- If margin ≥ 1, don’t care
- If margin < 1, pay linear penalty

Slack Penalty $C > 0$:
- $C=\infty \rightarrow$ have to separate the data!
- $C=0 \rightarrow$ ignore data entirely!
- Select on dev. set, etc.
Slack variables – Hinge loss

\[
\min_{\mathbf{w}, w_0} \frac{1}{2}\|\mathbf{w}\|_2^2 + C \sum_j \xi_j \\
\forall j. y_j (\mathbf{w} \cdot \mathbf{x}_j + w_0) \geq 1 - \xi_j, \xi_j \geq 0
\]

\[
[x]_+ = \max(x, 0)
\]

Solving SVMs:
- Differentiate and set equal to zero!
- No closed form solution, but quadratic program (top) is concave
- Hinge loss is not differentiable, gradient ascent a little trickier…
Logistic Regression as Minimizing Loss

Logistic regression assumes:

\[P(Y = 1|X = x) = \frac{\exp(f(x))}{1 + \exp(f(x))} \]

And tries to maximize data likelihood, for Y={-1,+1}:

\[P(y^i|x^i) = \frac{1}{1 + \exp(-y^i f(x^i))} \]

\[\ln P(D_Y | D_X, w) = \sum_{j=1}^{N} \ln P(y^j | x^j, w) \]

\[= - \sum_{i=1}^{N} \ln(1 + \exp(-y^i f(x^i))) \]

Equivalent to minimizing log loss:

\[\sum_{i=1}^{N} \ln(1 + \exp(-y^i f(x^i))) \]
SVMs vs Regularized Logistic Regression

SVM Objective:

\[
\begin{align*}
\arg \min_{\mathbf{w}, w_0} & \quad \frac{1}{2} \| \mathbf{w} \|_2^2 + C \sum_{j=1}^{N} \left[1 - y^j f(x^j) \right]_+ \\
& \quad \text{[x]_+ = max(x, 0)}
\end{align*}
\]

Logistic regression objective:

\[
\begin{align*}
\arg \min_{\mathbf{w}, w_0} & \quad \lambda \| \mathbf{w} \|_2^2 + \sum_{j=1}^{N} \ln(1 + \exp(-y^j f(x^j)))
\end{align*}
\]

Tradeoff: same \(l_2\) regularization term, but different error term
Logistic regression:
\[
\ln(1 + \exp(-y^j f(x^j)))
\]

Hinge loss:
\[
[1 - y^j f(x^j)]^+
\]

0-1 Loss:
\[
\delta(f(x^j) \neq y^j)
\]

We want to smoothly approximate 0/1 loss!
What about multiple classes?
Learn 3 classifiers:
- $+$ vs $\{0,-\}$, weights w_+
- $-$ vs $\{0,+\}$, weights w_-
- 0 vs $\{+,-\}$, weights w_0

Output for x:
\[y = \text{argmax}_i w_i \cdot x \]

Any problems? Could we learn this \rightarrow dataset?
Simultaneously learn 3 sets of weights:

- How do we guarantee the correct labels?
- Need new constraints!

For each class:

\[w^{y^j} \cdot x^j + w_0^{y^j} \geq w^{y'} \cdot x^j + w_0^{y'} + 1, \quad \forall y' \neq y^j, \quad \forall j \]
Learn 1 classifier: Multiclass SVM

Also, can introduce slack variables, as before:

\[
\begin{align*}
\min_{w, w_0} & \sum_y \| w^y \|_2^2 + C \sum_j \xi^j \\
w^y_j \cdot x^j + w_0^y & \geq w^{y'} \cdot x^j + w_0^{y'} + 1 - \xi^j, \quad \forall y' \neq y^j, \quad \xi^j > 0 \quad \forall j
\end{align*}
\]
What you need to know

• Maximizing margin
• Derivation of SVM formulation
• Slack variables and hinge loss
• Tackling multiple class
 – One against All
 – Multiclass SVMs